PRIMER NOTE
Development and characterization of microsatellite markers for the Amazonian blackwing hatchetfish, *Carnegiella marthae* (Teleostei, Gasteropelecidae)

L. B. BEHEREGARAY,* M. PIGGOTT,* N. L. CHAO† and A. CACCONE‡

*Molecular Ecology Laboratory, Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia,
†Departamento de Ciências Pesqueiras, Universidade Federal do Amazonas, Manaus, AM 69700-000, Brazil,
‡Department of Ecology and Evolutionary Biology and Yale Institute of Biospheric Studies, Yale University, New Haven, CT 06520-8106, USA

Abstract

The blackwing hatchetfish, *Carnegiella marthae*, is a small characin species distributed in forest streams of the Negro and upper Orinoco River basins in Amazonia. Freshwater hatchetfish are popular in the aquarium trade and represent an economic resource for the riverine people from middle Rio Negro, in Brazil. We isolated and characterized seven microsatellite DNA loci for the blackwing hatchetfish. Number of alleles and heterozygosity per locus in a sample of 30 fish ranged from three to 17 and from 0.19 to 0.87, respectively. These microsatellite loci provide powerful markers for studies on taxonomy, management and phylogeographic history of Amazonian hatchetfish.

Keywords: Amazon rainforest, *Carnegiella marthae*, conservation genetics, Gasteropelecidae, microsatellites, phylogeography

Received 22 November 2005; revision accepted 30 January 2006

The rivers of northern South America, especially those draining the Amazonia rainforest, contain an exceptional diversity of freshwater fish. This diversity is largely understudied both from an ecological and from a biogeographic perspective. We are generating large DNA data sets using microsatellites, mitochondrial DNA and intron DNA markers to investigate population history in four codistributed fish groups from central Amazonia (e.g. Beheregaray et al. 2004a, b; Beheregaray et al. 2005). The present study adds to this effort by describing a set of microsatellite DNA markers for the fourth study species of our comparative study, the blackwing hatchetfish, *Carnegiella marthae* (Teleostei, Gasteropelecidae). This peculiarly shaped and small fish is found in forest streams throughout the Amazon basin and upper Orinoco (Géry 1977; Weitzman & Palmer 2003). Blackwing hatchetfish are popular in the aquarium trade and represent a valuable resource for ornamental fishermen from middle Rio Negro, in Brazil (Chao et al. 2001). We expect that the microsatellite markers described here will prove useful for studies on taxonomy, phylogeography and conservation management of Amazonian hatchetfish.

Blackwing hatchetfish microsatellite loci were isolated using a modified enrichment technique (Fischer & Bachmann 1998). Genomic DNA was digested with *Rsa*I and *Hae*III and fragments ligated to two oligo adaptors (Edwards et al. 1996). Two biotinylated oligo probes (dGA₁₀ and dGT₁₀) were hybridized to the digested DNA and separated using streptavidin magnetic particles (Promega). Polymerase chain reactions (PCRs) were performed on the microsatellite-enriched eluate using one of the oligo adaptors as a primer. The enriched library was purified using a gene clean kit (Qbiogene), ligated into pCR 2.1-TOPO vector (Invitrogen) and transformed into TOP10 cells (Invitrogen). The plasmid DNA was purified and 38 putative positive clones were sequenced on an ABI 377 automated DNA sequencer (PE Applied Biosystems) using dye terminator chemistry. Primers flanking eight dinucleotide microsatellite loci were designed using primer 3 (Rozen & Skaletsky 1997).

We assessed allelic and genotypic variation at these eight microsatellite loci by PCR using a 10-µL radiolabelled reaction containing ~50–100 ng of template DNA, 12 pmol of each primer, 0.5 U of *Taq* DNA polymerase (Promega),
Table 1 Primer sequences and characteristics of seven blackwing hatchetfish (*Carnegiella marthae*) microsatellite loci. Number of alleles (*N*) and expected (*H*) heterozygosities are based on a sample of 30 individuals. *T* is the annealing temperature(s) used in PCRs.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Primer sequences (5′−3′)</th>
<th>Repeat structure</th>
<th>T (°C)</th>
<th>N</th>
<th>Size range (bp)</th>
<th>HE</th>
<th>HI</th>
<th>GenBank Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cm3</td>
<td>CCTCAGGTTGAGTCTGAATTTAAGGG</td>
<td>(CA)21</td>
<td>63−55</td>
<td>8</td>
<td>241−277</td>
<td>0.57/0.47</td>
<td></td>
<td>DQ297667</td>
</tr>
<tr>
<td>Cm4</td>
<td>CGCGCTGCTGAGTCTGAGCTTCC</td>
<td>(CA)27</td>
<td>63−55</td>
<td>4</td>
<td>210−228</td>
<td>0.29/0.45</td>
<td></td>
<td>DQ297668</td>
</tr>
<tr>
<td>Cm6</td>
<td>AGCTGTCTGAGGCAATTGTTG</td>
<td>(GA)27</td>
<td>55−47</td>
<td>17</td>
<td>240−316</td>
<td>0.80/0.80</td>
<td></td>
<td>DQ297666</td>
</tr>
<tr>
<td>Cm8</td>
<td>CAGAAGCGCTGATAGGCTGAC</td>
<td>(CT)29</td>
<td>55−47</td>
<td>16</td>
<td>106−146</td>
<td>0.87/0.87</td>
<td></td>
<td>DQ297670</td>
</tr>
<tr>
<td>Cm10</td>
<td>CACCACCTCACACATAGG</td>
<td>(CT)14</td>
<td>60</td>
<td>15</td>
<td>274−322</td>
<td>0.80/0.84</td>
<td></td>
<td>DQ297671</td>
</tr>
<tr>
<td>Cm20</td>
<td>CACCTATTTAGAGGCTGAC</td>
<td>(CA)3</td>
<td>63−55</td>
<td>3</td>
<td>123−169</td>
<td>0.20/0.19</td>
<td></td>
<td>DQ297672</td>
</tr>
<tr>
<td>Cm23</td>
<td>TGTTACACCAGTTGTGTTG</td>
<td>(GT)20</td>
<td>55−47</td>
<td>5</td>
<td>160−172</td>
<td>0.27/0.39</td>
<td></td>
<td>DQ297673</td>
</tr>
</tbody>
</table>

References

Acknowledgements

We thank the Discovery Program of the Australian Research Council (grant no. DP0556496 to L. Beheregaray) and the Ecosave program (Yale Institute of Biospheric Studies, YIBS) for providing financial support for this research. Logistic support and field assistance in Amazonia was provided by Project Piaba (Universidade Federal do Amazonas — PRONEX CNPq no. 46.6090/2001-4 and Bio-Amazonia Conservation International).